Section 3.9 Logarithmic Differentiation

Review of Logarithm Properties and Derivatives
 Logarithmic Differentiation

Review, Logarithmic Functions

Definition of Logarithms $y = \log_b(x) \Leftrightarrow b^y = x$

Basic Properties

(I)
$$b^{\log_b(x)} = x$$
 and $\log_b(b^x) = x$.
(II) $\log_b(xy) = \log_b(x) + \log_b(y)$.
(III) $\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)$.
(IV) $\log_b(x^y) = y \log_b(x)$.

Derivatives

$$\frac{d}{dx}(\log_b(x)) = \frac{1}{x\ln(b)} \qquad \qquad \frac{d}{dx}(\ln(x)) = \frac{1}{x}$$

Examples, Logarithms

(a) $\log_4(16)$ (b) $\log_4\left(\frac{1}{16}\right)$ (c) $\log_{1/4}\left(\frac{1}{16}\right)$ (d) $\log_2\left(\sqrt[3]{2}\right)$ (e) $\log_2\left(\frac{1}{4\sqrt{2}}\right)$

(f)
$$\ln\left(\frac{x^2(x-1)}{\sqrt{x+1}}\right)$$

The domain of $\log_b(x)$ is the range of $y = b^x$, namely $(0,\infty)$.

Question: How can we extend the logarithm function to something whose derivative is $\frac{1}{x}$ for all nonzero x?

Answer: Define
$$f(x) = \ln |x| = \begin{cases} \ln(x) & \text{if } x > 0, \\ \ln(-x) & \text{if } x < 0. \end{cases}$$

Logarithmic Differentiation

Example 1: Let $y = f(x) = x^x$. Find the derivative f'(x).

The rules
$$\frac{d}{dx}(x^n) = nx^{n-1}$$
 and $\frac{d}{dx}(b^x) = b^x \ln(b)$ do not apply!:
• $f(x) = x^x$ is not a power function (the exponent is not a number)
• $f(x) = x^x$ is not an exponential function (the base is not a number)

Use the technique of logarithmic differentiation.

- (I) Take the natural logarithm of both sides of the equation $y = x^x$ and use the Laws of Logarithms to simplify the expression.
- (II) Differentiate the expression implicitly with respect to x.
- (III) Solve for dy/dx.

Logarithmic Differentiation

Logarithmic Differentiation

- (I) Take the natural logarithm of both sides of an equation y = f(x)and use the Laws of Logarithms to simplify the expression.
- (II) Differentiate the expression implicitly with respect to x.
- (III) Solve for dy/dx, replacing y with f(x).

Logarithmic Differentiation

Logarithmic Differentiation

- (I) Take the natural logarithm of both sides of an equation y = f(x)and use the Laws of Logarithms to simplify the expression.
- (II) Differentiate the expression implicitly with respect to x.
- (III) Solve for dy/dx, replacing y with f(x).

In general there are four cases for exponents and bases:

(1)
$$\frac{d}{dx}(a^{b}) = 0$$

(2) $\frac{d}{dx}([f(x)]^{b}) = b[f(x)]^{b-1}f'(x)$
(3) $\frac{d}{dx}(a^{g(x)}) = a^{g(x)}\ln(a)g'(x)$
(4) $\frac{d}{dx}([f(x)]^{g(x)}) = (g'(x)\ln(f(x)) + \frac{g(x)f'(x)}{f(x)})[f(x)]^{g(x)}$

Example 2, Logarithmic Differentiation

(1) Find the derivative of $y = (2x+1)^5(x^3-1)^3$.

(II) Find the derivative of
$$y = \left(\frac{x^2(x-1)}{\sqrt{x+1}}\right)^{\pi}$$
.

Logarithmic Differentiation: Example 2:

(III)
$$y = x^{\sin(x)}$$
:
(IV) $y = \sin(x)^{\arctan(x)}$:

Example 3

(I) Let $f(x) = \log_a(3x^2 - 2)$. For what value of a is f'(1) = 3?

(II) On what interval(s) is the function $f(x) = \frac{\ln(x)}{x}$ increasing, decreasing, concave upward and concave downward?

Example 4, Logarithmic Implicit Differentiation!

Consider the curve defined by the equation $y\sqrt{x^2+3} = x^y$. Find the equation of the tangent line at the point $(1, \frac{1}{2})$.

Joseph Phillip Brennan Jila Niknejad

